Journal of Power Sources 373 (2018) 40-53

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

A quick on-line state of health estimation method for Li-ion battery with
incremental capacity curves processed by Gaussian filter

@ CrossMark

Yi Li*"*, Mohamed Abdel-Monem™‘, Rahul Gopalakrishnan®, Maitane Berecibar”,

Elise Nanini-Maury”, Noshin Omar®, Peter van den Bossche®, Joeri Van Mierlo®
2 Vrije Universiteit Brussel, MOBI Research Group, Pleinlaan 2, 1050, Brussels, Belgium

b ENGIE LAB Laborelec, Rodestraat 125, B-1630, Linkebeek, Belgium
€ Helwan University, Faculty of Engineering, Cairo, Egypt

HIGHLIGHTS

® Proposed an on-line battery state of health (SoH) monitoring method for NMC cells.
® The method can monitor battery SoH with partial charging data.

® Ageing mechanisms of batteries are studied by non-destructive methods.

® Gaussian filter is used to obtain IC curves with improved smoothness.

® Established a quantitative correlation between features on IC curves and cell SoH.

ARTICLE INFO ABSTRACT

This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion
batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and
quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian
filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately
identified. A linear regression relationship is found between the battery capacity with the positions of features of
interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery
cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5%
maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique,
partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely
reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and
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can be easily implemented in battery management system (BMS).

1. Introduction

Lithium ion battery (LIB) was firstly commercialized by Sony in
1991, since then this chemistry has become the one of the most pro-
mising and fastest growing electric energy system storage (ESS) in the
market due to the advantage of high volumetric/gravimetric energy
density [1]. LIBs were initially applied on portable/consumer devices
such as cell phones and laptops, with the achieved significant success in
this market, they are recently penetrating into the field of hybrid
electric vehicle (HEVs) and electric vehicles (EVs). It could be foreseen
that they can largely expand their market in large scale ESS application
as their costs keep dropping and the lifetime get improved [2].

The performance of LIB degrades with time, an accurate diagnosis of
battery degradation is of great significance for safe and efficient battery
utilization. Battery state of health (SoH) is used as an indicator to
evaluate the degradation level of batteries. The battery SoH is mon-
itored through a battery management system (BMS), it still remains a
difficult and challenging topic since the ageing mechanisms of batteries
are complicated and the battery degradation do not originate from one
single cause, but from various processes and their interactions, like the
operating modes, working environment and ageing history [3,4]. The
battery SoH reflects the ability of a battery to store and supply energy in
respect to its initial conditions by considering the energy and power
requirements of the application, which can be defined as a state of
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health related to energy capability (SoHg) or/and power capability
(SoHp). The SoHy can be quantified by the battery capacity and im-
pedance is used for the quantitative definition of battery SoHp. Having
an accurate prediction for either one with simple approaches is parti-
cularly significant to the safety of entire systems, with this information
we can adjust the operating modes to extend the battery lifetime as well
as predict the appropriate time intervals for battery replacement [5]. In
this work, the battery capacity is chosen as the indicator for SoH by
calculating the ratio of actual cell capacity to the cell initial capacity

(SoH = % X 100%). For a fresh battery, the SoH is equal to 100%

and the value of SoH decreases with ageing. The battery end of life
(EoL) is defined by the application requirements. For the batteries ap-
plied in EVs or HEVSs, they are considered no longer usable and should
be replaced when the SoH is less than 80% [6]. However, this direct
calculation method requires a fully charging and discharging cycle of
the battery, which is energetically inefficient as well as impractical in
real application since the batteries are partially cycled in most cases.

Research on battery SoH estimation has attracted lots of attention in
recent years. Different estimation methods have been proposed in this
field, each technique has its own advantages and shortcomings in terms
of estimation accuracy, testing time duration, feasibility for im-
plementation. The SoH estimation techniques can be roughly classified
to three groups: experimental techniques, adaptive models and incre-
mental capacity/differential voltage analysis.

The first group is directly measured from experiments, such as hy-
brid pulse power characterization (HPPC) and electrochemical im-
pedance spectroscopy (EIS). HPPC method is capable of identifying the
battery dynamic power capability over its useable charge and voltage
range by using a test profile that incorporates both charge and dis-
charge pulses [5,7]. EIS is mainly used to determine the impedances of
the battery and proved to be an effective tool for ageing and failure
diagnosis [8,9]. Since the battery impedance increases with battery
capacity fade and different battery dynamics tend to affect different
frequency ranges on the EIS measurement [5]. However, the experi-
mental methods are remaining to be off-line SoH identification tech-
niques [9].

The second group is the adaptive model based methods, which can
be further dived into lumped-parameter equivalent circuit based
models and black-box based methods. The equivalent circuit model
(ECM) with joint/dual extended Kalman Filters (EKF), also called joint
estimation, have the advantages of providing high accuracy of capacity
estimation [10-15]. These models have strong physical relation be-
tween the model parameters with the underlying electrochemical pro-
cesses that occur within battery cells [16]. Unfortunately, the model
based techniques can be computational intensive due to large matrix
operations and therefore difficult to be implemented in BMS for real
application [15]. The black-box based models, such as neuron network
(NN) and support vector regression (SVR), do not rely on the pre-
determined system parameters or have any connection with the phy-
sical properties of batteries [10,17-20]. Compared to model-based ap-
proaches, they have less requirements on dedicated hardware/software
[17]. Such statistical approach learns the ageing behavior of the studied
system from a large amount of data and find a mathematical description
to make connections between the battery features like terminal voltage,
current and temperature with the cell capacity. The limitation of the
machine learning based method is that they require acquisition of data
covering the entire age of the battery under various utilization modes,
and they are only valid within the trained data range [18].

The third group is the differential approach based on incremental
capacity (IC) analysis and/or differential voltage (DV) analysis. This
differential analysis have the advantages from both experimental and
adaptive-model approaches, as it can be used for battery degradation
identification as well as the SoH estimation with low computational
effort [6]. The requirement of static charging/discharging is the main
drawbacks of this method [6]. Incremental capacity is calculated by
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differentiating the change in battery capacity to the change in terminal
voltage during either charging or discharging, as defined in the Eq. (1).
Differential voltage is defined as the inverse of differential capacity,
shown in Eq. (2) [21].

dQ _ AQ _ Q= Qi
v AV V-V, (€]
av _AV _Vi-Vig
dQ AQ Q — Qi1 2)

where Q; and represent the battery capacity and voltage at time ¢, re-
spectively. Although both of them can provide similar information,
there is a big difference between each other. The IC curve refers to the
cell voltage, which can be a direct indicator of the battery state,
whereas the DV refers to the cell capacity, which is a secondary in-
dicator that can vary with aging and degradation and lose its reliability
as a reference in the course of aging [22]. With this method, the voltage
plateaus on the charging/discharging curve can be transformed into
clearly identifiable peaks on the IC/DV curve. The peaks in IC curve
represent phase equilibria, while the DV curve represents phase tran-
sitions [23]. Each peak in the curve has its unique features, like in-
tensity and position, and it represents a specific electrochemical process
taking place in the cell [24]. The extracted peak values and the shape
and position variation of peaks are closely related to the battery ca-
pacity fading, and therefore can be used for monitoring battery ageing.
The specific degradation mechanism can be distinguished by analyzing
the progression of each peak in IC/DV curves throughout ageing, ob-
serving how the change of the active materials over time can be helpful
in identifying the best operating conditions for cells.

Previous studies based on differential analysis have shown it to be
an effective tool for both analyzing battery ageing mechanism and SoH
estimation, e.g. in Refs. [4,6,25-32]. This method is interesting as it
have many advantages: it can be easily implemented in a BMS by just
monitoring two parameters (voltage and charge/discharge capacity); it
is suitable for different types of lithium ion batteries like chemistries,
battery size, cell designs and operating condition [5]. Bloom et al. [30]
conducted DV analysis on NMC/graphite cells and found the side re-
actions mainly happen on negative electrode which leads to battery
capacity fade. Han et al. [29] used IC curves to analyze the ageing
mechanism of NMC/LTO cells and found a two-stage capacity loss,
which is caused by the loss of anode material and loss of cathode ma-
terial, respectively. Dubarry et al. [28] studied the aging behaviors of
commercialized LiFePO, /graphite (LFP) cells in different formats with
IC analysis. Till now, most of the IC/DV analysis on Li-ion batteries
have been focused on the electrochemical ageing mechanism analysis,
while only a handful of research has been carried out for on-line SoH
estimation [4,6,31,32]. Wang et al. [4] proposed an on-line SoH esti-
mation method for LFP battery pack, they estimated the battery SoH by
relating the location interval of two inflection points on DV curves to
battery capacity fade. Berecibar et al. [6] estimated the battery SoH
with DV analysis, their method is able to use partial charging curves
with maximum initial SoC levels of 60% SoC but restricted to low
charging current rate ofl,' /5. Weng et al. [31] derived IC curves with
the approach of support vector regression algorithm by using partial
charging data and the battery capacity fade was correlated with the
intensity of IC curve peaks, but it is costly to be implemented into BMS.
These IC/DV based SoH estimation techniques are developed for LFP
cells. Because each chemistry has its own characteristics and performs
differently from the others, this means the proposed method for LFP
cells might not be suitable for NMC cells. Therefore, the adaptability
and validity of IC/DV analysis on NMC cells should be investigated. Goh
et al. [32] proposed a capacity estimation algorithm for NMC battery by
using second-order DV curves obtained in the constant charging phase,

1 I, represents the current rate as documented in the standard IEC 61434 and presented
by Equation I; = C/1 h [33].
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nevertheless, this method has the limitation of requiring a low initial
charging SoC level (less than 15%). There is still room for the im-
provement of IC/DV analysis for SoH estimation, like reducing the
testing time by increasing current rate and/or using partial charging/
discharging curves with flexible initial charging SoC levels.

To get IC/DV curves, applying numerical derivative directly to the
data is the most intuitive approach as shown in Egs. (1) and (2). The
peaks of IC curves are derived from the voltage plateau region of the
voltage-capacity curve, and this region is sensitive to measurement
noise and trembling [31,34]. Getting smoothed IC/DV curves is the first
and also the most important step for further ageing and SoH analysis.
Till now, different methods have been applied to obtain smooth IC/DV
curves, like moving average (MA) [23,25,26,30,35], improved center
least squares method [4], applying radial basis function [21], support
vector regression [31] and data reduction prior to applying derivative
functions (e.g. using the experimental data with 10 mV intervals) [36].
Among all, MA is one of the most often used methods due to its sim-
plicity. MA is good enough for distinguishing the important features on
the differential curves, but it fails to provide satisfying smoothing effect
for on-line SoH estimation. The detailed discussion of MA will be
thoroughly discussed in Section 3.1. In order to obtain IC/DV curves for
quantitative analysis, an improved smoothing method with enough
simplicity for further being implemented in BMS is highly wanted.

This paper aims at developing a fast on-line SoH monitoring method
with differential analysis for high energy NMC/graphite LIBs. Our study
is based on a battery life cycle test data set with more than two-year
experimental period. In this work, an advanced smoothing method
based on Gaussian filtering is proposed, which has proved to be an
effective method for obtaining smooth differential curves and preser-
ving well the important features on the curves that show strong cor-
relation with battery ageing. An effective on-line SoH estimation
method was proposed based on the IC analysis with /2 current rate
during charging process, which can largely reduce the time for battery
SoH estimation. The results show that the proposed method built up on
the data from one cell is able to predict the SoH of five other cells which
are cycled under different cycling depth with less than 2.5% max errors.
The proposed multi-stage SoH estimation method is valid to identify the
battery SoH with only partial charging, and the testing time can be
therefore largely decreased from maximum 2 h to minimum 0.8 h under
test current rate. Since battery SoH estimation is closely related to the
ageing process, work was also carried out on discussing the degradation
mechanisms of the high energy NMC batteries with low current test
profile of 1,/25.

The remainder of this paper is organized as follows: Section 2 in-
troduces experiment setup and cycle ageing framework. In Section 3,
the constrains of conventional smoothing method for obtaining IC/DV
curves are discussed and an advanced smoothing technique based on
Gaussian filtering is proposed. The physical battery degradation process
is discussed in Section 4 by analyzing the IC/DV curves obtained from
I,/25 test. Section 5 proposed the on-line SoH estimation method by
analyzing the variation of features on the IC curves with ageing, the
validation of this method is also presented in this section. The conclu-
sions are presented in Section 6.

2. Experimental
2.1. Cell specifications and testing system

The batteries used for this test are commercial high energy NMC/
graphite pouch cells. We could not establish the name of the manu-
facturer. The nominal capacity of the battery is 31.5 Ah, and voltage
operation range is from 3 V to 4.2 V. The parameters of the battery cells
used in the tests are listed in Table 1. The whole ageing tests were
performed in ambient temperature.

The experiments were performed on a 16-channel, SBT05250L type
battery test system manufactured by PEC with a current range of 0-250
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Table 1
Specifications of tested cells according to the manufacturer's datasheet.

Positive electrode material NMC
Negative electrode material Graphite
Nominal capacity (at 0.3]; rate, 3 V-4.2 V) 31.5Ah + 2.5%
Nominal voltage (at 0.3]; rate) 3.7V
Energy density 180 Wh-kg™!
Power density (at 50% SoC, 10 s) 2300 W-kg~!
Voltage range 3t042V
Table 2
Test matrix for cycling ageing.
Specifications Celll Cell2 Cell3 Cell 4 Cell 5 Cell 6
Cycle depth (%) 100 100 80 80 60 60
Cycling SoC range (%) 0-100 0-100 20-100 20-100 40-100 40-100

A and a voltage range of 0-5 V. The voltage and current accuracy are
+ 0.03% full scale. The data acquisition system has a sampling frequency
of max. 100 Hz.

2.2. Battery ageing test profiles

The battery ageing process are influenced by many factors like cy-
cling depth, current rate, temperature and middle state of charge. All
the factors work simultaneously on the batteries to influence the ca-
pacity and power degradation. For a specific application, however,
some of the stress factors can play more important roles on the battery
ageing than the others. We could investigate the battery degradation
process by focusing on the most important ageing impact factors. Due to
the application requirement, our research work is mainly interested in
the impact of cycling depth on the battery capacity fading process.

A CC-CV (constant current - constant voltage) charge-discharge test
regime is used to age the battery. During charging, the current rate of
I,/2 is applied on the CC step until the battery reaches its cut-off voltage
of 4.2'V. Then a CV step in which battery remain in floating mode at the
cut-off voltage until the current reaches the minimum threshold of
I,/10. Then the batteries are discharged with the same current rate of
I,/2 till the predefined lower voltage limit. Six cells in total are used for
cycling ageing test, divided into three groups and cycled under different
cycling Depth of Discharge (DoD). The selected cycling DoD levels are
100%, 80% and 60%, the DoD always refers to the nominal capacity as
indicated by the battery manufacturer in this work. The cycle test
matrix is given in Table 2. Cell 1 and 2 are cycled under 100% DoD, it
refers to a complete discharge from 100% SoC to 0% SoC and a com-
plete charge process from 0% to 100% SoC. Similarly, the cell 3 and 4
are cycled under 80% DoD refer to discharge and charge process in the
SoC range of 100%-20%, and cell 5 and 6 cycled under 60% DoD are
discharged and charged in the range of 100%-40% SoC.

In this test, capacity tests have been performed with intervals of
every 100 full equivalent cycles (FECs)” to assess the battery capacity
loss. The capacity test at beginning of life (BoL) allows us to collect the
information of the initial condition of the battery, and it determines the
baseline values of battery health, which are later used to enable health
monitoring throughout the useful life of the battery. The periodic
characterization tests performed during cycling intervals allow us to

2 One equivalent full cycle means one complete charge and discharge event. However,
cells are not always going from fully charged to discharged state, but in partial cycle
range (e.g. from 20% to 100% SOC range) or in irregular operating conditions (e.g. real
driving cycles). In such cases, the number of equivalent cycles can be calculated:
N = Y (ADoD/2). If a battery is charged from fully discharged (0% SOC) to fully charged
(100% SOC), the ADOD is 1 for both charging and fully discharging step, producing one
equivalent cycle according to the equation.
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Fig. 1. IC charge curve(s) of cell 1 at BoL under current rate of I;/25 with sampling frequency of 0.1 Hz (a) without applying smoothing tool (b) after applying average smoothing methods
with different smooth points of 50, 100, 200, 300, 500 and 800 (c) comparison of IC curves smoothed by GS with smoothing window of 50, 100, 200, 300, 500 and 800 (d) comparison of
two smoothing method: MA method with smoothing points of 50 and proposed GS with smoothing window of 300.

acquire information on the battery ageing trends. CC-CV mode is used
for performing the capacity test with highest and lowest cut-off voltage
of 4.2 V and 3.0 V, respectively. The capacity tests were carried out at
different current rates: I,/25, I,/3, I,/2 and 1I,. The purpose of the ca-
pacity test at low current rate of ,/25 is to identify the battery ageing
mechanism with IC/DV analysis. At such low constant current, full
charge and discharge tests are able to measure the amount of accessible
capacity of the cell and to determine the relationship between the cell
potential and capacity under quasi-equilibrium conditions. The re-
sulting charge and discharge curves contain electrode phase informa-
tion with a minimum amount of kinetic artifacts and are well suited for
degradation mechanism analysis. However, carrying out capacity test at
such low current rate is not practical for real application of SoH esti-
mation due to being time consuming. Therefore, the capacity test at
higher current rate was carried out to find the most suitable current rate
for on-line SoH identification in a reasonable time period without
compromising the estimation accuracy.

3. IC/DV curve acquisition

The battery discharge process is unpredictable as this process de-
pends on the utilization mode of the battery system. Nevertheless, the
charge current is normally constant under most conditions like charging
of electrical vehicles. Therefore, the charging voltage-capacity(V-Q)
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curve is chosen for IC/DV analysis for battery SoH estimation.

3.1. Conventional numerical derivative with moving average (MA)
smoothing

Fig. 1 (a) gives an example of the IC curve for cell 1 at fresh state
achieved by numerical derivative method, the measurements were
collected with 10 s intervals (Sampling frequency = 0.1 Hz, the reason
of using this time interval will be discussed in Section 3.3). All single
cell results in this paper are based on the cell 1 unless otherwise noti-
fied. As observed, this curve is very noisy and it is impossible to identify
any useful features. In order to get a smoother differential curves, MA is
normally applied on the battery voltage and capacity data before ap-
plying the numerical-derivative method. MA is a specified number of
past data points, giving equal weight to each data point. The moving
average filter can be expressed as [37]:

1 M-1
Y=+ Z;) x(i + )

3

where x(-) is the input signal, y(-) is the output signal, and M is the
number of points in the average. With this moving average filter, the
random white noise can be reduced while the sharpest step response is
sustained [38]. MA is highly influenced by the number of chosen
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smoothing points. Increasing the number of smoothing points can give
improved smoothing effect but the shape of obtained curves will be
deformed and can therefore lead to false interpretation of the important
features on the IC/DV curves.

Fig. 1 (b) illustrates the influence of different smoothing points on
the IC curves for a fresh cell. Although the peaks can be clearly seen
from the IC curve with smoothing points of 50, it is still too noisy to be
used for further investigation since the important information like peak
height or position cannot be identified from it. To achieve a smoother
curve, the smoothing points need to be increased. Nevertheless, the
increment of the smooth points leads to the deformation of curves. The
intensity of all peaks are decreasing and the positions of them are
shifting toward to higher voltage range along with the increased
smoothing points. Additionally, the small peaks in the voltage range of
3.5-3.6 V are diminished when the smoothing points increase to 800.
Unfortunately, with largely increased smoothing points, the smoothing
effect of MA method is still not satisfying for accurately extracting the
information of peak features like position and intensity. This can be
seen from the small figure in Fig. 1 (b). Therefore, MA method is not
suitable for further quantitative analysis and a more robust method is
required to provide improved curve smoothing effect as well as con-
serve all the important features on IC curves.

3.2. Improved smoothing method with Gaussian smoothing (GS)

Herein, Gaussian filter is introduced on the sets of pre-filtered data
with MA to give satisfactory reductions of the variability. The key to the
success of this technique lies in the fact that the data were dominated
by relatively low frequencies of variation which could be separated
from the higher frequency noise.

The GS is highly accurate where they confidently identify sig-
natures. A GS has the shape of a Gaussian distribution, which is ex-
pressed with the following equation [39]:

—(x— u)z)

207

1

G(x) = o exp(
where p is the mean value, and o is standard deviation controls the
window size. The moving averaging filter mentioned above can replace
each data point with the average of its neighbors. This means that
nearby data all play an equal role in the average and the distant data
play no role. When Gaussian filter is applied, each data point can be
replaced by a weighted average of its neighbors. Hence, the nearest
data have more influence on the average and the distant data play a
smaller role. When the Gaussian is used for smoothing, i is normally set
to 0, because we want each data to be the one that has the biggest effect
on its new, smoothed value. o will serve as a parameter that allow us to
control how much smooth the final curve, more specifically, how big
the smoothing window we use for averaging. The bigger o is, the
smoother effect we can achieve. Nevertheless, the value of o should be
kept in an appropriate range. Too small a value leads to undesirable
smoothing effect, while too large a value may result in losing important
information.

After generating a Gaussian window with the aforementioned
equation (using gausswin(N), a function in the statistics toolbox for
Matlab, N defines the Gaussian window point number), it will be con-
volved with the pre-filtered data by MA to smooth out the noise. For
instance, with the V-Q data obtained from I,/25 test with sampling
frequency of 0.1 Hz, we firstly smooth the data by using a MA method
with a small smoothing window (50 points) to get the outlier of the IC
curves, then a Gaussian filter was applied on the curves to smooth out
the noises which cannot be eliminated by the simple MA smoothing.
The smoothing effect of Gaussian filter is improved by increasing the
smoothing window, as illustrated in Fig. 1 (c). This figure compares the
IC curves obtained by the proposed method with smoothing window of
50, 100, 200, 300, 500 and 800. Compared to the moving average

C)
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smoothing method, the GS can offer enhanced smoothing effect. The
smoothness of curve can be significantly improved by increasing the
Gaussian smoothing window, and all the noise on the differential curves
can be effectively filtered by using a smoothing window of 300. These
curves after proposed smoothing method under different smoothing
windows have high similarities, although the features on curves are also
slightly influenced by the width of smoothing window. Too small of the
smoothing window cannot provide satisfactory smoothing effect, which
can be called under-smoothing. Noise can be clearly seen on the IC
curves (in Fig. 1 (c)) when using smoothing window of 50, 100 and 200.
When the value increase to 300, the noise can be effectively filtered and
the features can be well preserved on IC curves. However, an oversized
smoothing window will lead to curve deformation and loss of important
information, which is called over-smoothing. This phenomenon can be
observed In Fig. 1 (c) with a Gaussian window of larger than 500. When
IC curves are over-smoothed, the decrease of the peak intensity and
peak shifting to higher voltage levels can be observed. Noted that the
increased smoothing window will also increase the computational
burden for data processing. Hence, the smoothing window need to be
adjusted based on the testing condition before implementing this
technique for on-line SoH estimation. A smoothing window of 300 is
chosen in this work, as it can provide good smoothing without losing or
deforming the important FOIs on IC curves. Fig. 1 (d) compares the IC
curves for cell 1 at BoL obtained by the conventional MA method (with
smoothing points of 50) with the proposed GS method (with smoothing
window of 300). As can be seen, the features of IC curves can be well
preserved while the noises are successfully filtered. The positions and
heights of the peaks on IC curves can be consequently clearly identified,
this is of great significance for accurately correlating the battery SoH
with the peak variations during battery ageing in later sections.

The smoothing window in both MA and GS need to be adjusted
based on the testing conditions like applied charging/discharging cur-
rent rate and sampling frequency of data recording. Increased current
rate and/or decreased sampling frequency result in reduced amount of
data points and the smoothing window should be reduced accordingly
in order to preserve the FOIs on IC curves. On the contrary, if lower
current rate and/or higher sampling frequency are applied during the
experiment, larger smoothing windows need to be used to filter the
noise on differential curves.

3.3. Influence of sampling frequency on the IC curves

In the previous research, the voltage sampling frequency used for
obtaining V-Q curve varies from one research to another. Han et al.
[29] chose 1 Hz as the sampling frequency and they claimed that the
battery charged capacity was proportional to the number to sampling
points during charging process. Weng et al. [31,40] used a sampling
frequency of 10 Hz for the data acquisition. How the sampling fre-
quency can influence the IC curves has not been studied by any of the
previous research. The higher the sampling frequency the more data
points can be collected during the charging test, however the high
sampling frequency will lead to the use of expensive measurement units
which in turn affects the total price of the BMS.

Fig. 2 compares the charging IC curves of one cell with different
sampling frequency (10 Hz, 1 Hz, 0.1 Hz, 0.2 Hz and 0.01 Hz) with ,/2
current rate. Indeed, more data points can be collected from the test
with higher frequency, but it means the derived IC curves are noisier. In
this case, we need to increase the smoothing window to get smoothed
IC curves. All the important FOIs can be identified regardless of the
sampling frequency, however, the peaks are largely deformed when the
sampling frequency decreases to 0.2 and 0.01 Hz (see from the enlarged
figure of Fig. 2). The curves obtained with 0.2 and 0.01 Hz sampling
frequency are quite angular and cannot be further smoothed due to
lacking of sampling data. At such low sampling frequency, the peaks
shift toward to the higher voltage level and the intensity of peaks de-
crease significantly. The IC curves achieved with sampling frequency of
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Fig. 2. Comparison of IC curves with different sampling frequency under current rate of I;/2.

10 Hz, 1 Hz and 0.1 Hz are almost identical, increasing sampling fre-
quency is therefore not helpful for gaining extra information from the
IC curves.

The testing sampling frequency should be controlled in an appro-
priate range. Increasing the sampling frequency requires augmented
computational effort for data processing and also increases the BMS
cost of data recording. On the other hand, if the sampling frequency is
too low, the derived IC curves will lose their fidelity of SoH identifi-
cation as the peak position and intensity are largely changed. In this
work, we choose 0.1 Hz as the sampling frequency as it can provide
enough useful data points for deriving IC curves as well as decreased
the computational effort of curve smoothing.

4. Battery degradation mechanism identification
4.1. Previous research on ageing mechanism of NMC batteries

Ageing is a phenomenon which leads to loss of capacity or increase
in internal resistance in Li-ion batteries during both cycling and storage
and it occurs due to various side reactions inside the cell [41]. Ac-
cording to the previous research, the ageing mechanisms for Li-ion cells
can be categorized into the following groups: (1) loss of lithium in-
ventory (LLI), (2) loss of active material (LAM) and (3) resistance in-
crease (RI) [42].

LLI is mainly related to solid electrolyte interphase (SEI) formation
and side reactions caused by decomposed electrolyte [42]. It has been
well established that dominant ageing mechanisms on graphite anodes
are caused by SEI formation, which can also result in a significant in-
crease of the impedance and a limitation of the electrode kinetics [43].
LAM can directly affect the usable capacity of the electrodes and ori-
ginates from three basic conditions: structural changes during cycling,
chemical decomposition or dissolution reactions of transition metal into
the electrolyte solution and surface film modification [42,44]. LAM can
be further categorized as four different modes: LAM on the positive
electrode (PE) in the lithiated/delithiated state (LAMjpr/LAMgyepr),
LAM on the negative electrode (NE) in the lithiated/delithiated state
(LAMjing/ LAMgeng) [3]. RI is the result of the degradation on both the
electrodes and electrolyte and both LAM and LLI can contribute to RI
[42].

To date, the research on ageing mechanism identification of NMC
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containing Li-ion batteries with graphite as negative electrode has been
done on laboratory cell scale as well on the commercial cell scale
[30,44-46]. The research done on laboratory scale, used manually as-
sembled cells in laboratory pouch cells or coin cells as research objects.
For instance, Zeng et al. [45] performed a post-mortem analysis on the
NMC/graphite battery after cycling and found that LAM happened on
the PE due to the destruction of structure and decreased the diffusion
rate of Li ions moving in/out of PE. The test result from Buchberger
et al. [47] on NMC cells indicates that LLI is the mainly cause for ca-
pacity fade during cycling ageing and LAM is found to be the main
ageing mechanism when cells are over-charged. Bloom et al. [30]
conducted DV analysis on NMC cells and found that the battery capa-
city fade is mainly caused by the side reactions at the negative elec-
trode. It was reported by Sarre et al. [48] that impurities, manu-
facturing processes, and cell design play a role in the aging reaction
rates. This is further confirmed by the research of Niehoff et al. [49]
after comparing the ageing results of hand-assembled 40 mAh
cells and automatically manufactured 40 A h cells, consisting
of same materials. Stiaszny et al. [46] investigated the calendaring
ageing mechanism of commercial 18650-type Li-ion batteries with L
iMn, O,/Li(NigsCog,Mng3)O, as PE and graphite as negative electrode
(NE) at elevated temperature. They detected that the capacity fade was
mainly caused by LLI due to SEI layer growth, a small portion of LAM
on PE due to formation of isolated particles and transition metal dis-
solution was believed to contribute to the total capacity fade. They also
found that RI happened due to electrolyte decomposition and diffusion
limitation inside the electrodes. Dubarry et al. [50] investigated the
effects of temperatures on the ageing behaviors of cycled 18650-type
batteries with Li,Mn,04/Li(Niy;3C0,/3Mny3)O; blend as PE and gra-
phite as NE. They found that LAM, SEI formation and the hindrance to
kinetics are the main reasons for causing the battery capacity fade at
high temperatures. The study on ageing mechanism detection for large
commercial cells was performed by Jalkanen et al. [44], they found SEI
layer growth and lithium plating are the main contributions to battery
capacity loss during cycling, while no signs of structural/chemical
changes in the active material from both electrodes were found in the
aged cells. They also observed a significant increase of both ohmic and
polarization resistance because of electrolyte consumption and possible
blockage of separator pores. The overview of previous research on the
NMC battery ageing process shows that the capacity and power fade are
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not caused by one single factor, but from a number of various processes
and their interactions. Various impact factors influence synthetically on
the ageing processes and complicate the investigation of ageing me-
chanisms. The studies of ageing mechanisms in large-scale pouch cells
are still scarce and a better understanding of their degradation process
will enable researchers to develop more accurate SoH estimation
models. Therefore, it's necessary and important to carry out research on
the ageing path of the objective high NMC batteries under the specific
cycling conditions.

4.2. Ageing mechanism of high energy NMC batteries

Herein, we use the IC analysis with a very low current rate (I,/25) to
acquire more information of the aging mechanism associated with the
cycling of this cell. At such low current rate, the polarization influence
on the IC curves can be decreased, and the shape of the curve will be as
detailed as possible [51]. The charging voltage curves of cell 1 from the
capacity test under current rate of /25 at different ageing states are
shown in Fig. 3(a). The charge voltage slightly shifts toward to the
lower capacity level during cycling due to battery capacity loss. Two
clear voltage plateaus can be identified from the V-Q curves due to
phase changes during charging, which are pointed out by the blue
circles. The information about the battery ageing mechanism is con-
tained in the shift of voltage plateaus. By applying IC analysis, these
voltage plateaus can be transformed into peaks, and the specific de-
gradation mechanism can be distinguished by analyzing the progression
of each peak in IC curves throughout ageing.

In Fig. 3 (b), the charging IC curves of cell 1 after different cycling
numbers are compared. Five different feature of interests (FOIs) are
observed on the IC curves, marked as A, B, C, D and E. A and B are
peaks have their initial maximum of intensity at 3.47 V and 3.60 V,
respectively. C is considered as the shoulder of this IC curve, which
starts from 3.83 V. E is the valley between peak A and B, located around
3.60 V. The valley D is located around 3.80 V, which is a valley between
peak B and shoulder C. According to the previous research, peak A is
mainly influenced by the reactions on the negative electrode
[27,52-54], and peak B might be dominated by the sequential phase
transition process Ni’* — Ni** — Ni** in NMC cathode [27,52-56].
The area under each peak represents the capacity of the related reaction
during the cycling process [57]. The FOIs will be further used as fea-
tures of interest for analysis, the change of their intensity and positions
will be recorded to collect the information about cell degradation me-
chanisms.

The variation of peak intensity and location of peak A and B along
with ageing are illustrated in Fig. 3 (c). The intensity of peak A is de-
creasing slightly from 0 till 700 cycles and then increasing from 700 to
1000 cycles. Nevertheless, the variation of peak A's intensity is rela-
tively small (less than 5%) during ageing. The intensity of peak B is
decreasing with the battery ageing state, dropping 20% compared with
the original peak intensity after 1000 cycles. It should be noticed that
even though the intensity of peak B is decreasing, the width of the peak
is increasing, which can be explained by the deteriorating kinetics [53].
Despite the evolution in peak intensity, the positions of all peaks on IC
curves were simultaneously shifted toward a higher voltage level, while
the positions on DV curves remain unchanged on DV curves during
battery ageing. The increase of resistance inside of battery can con-
tribute to this phenomenon according to the previous research of Ref.
[22,24]. Noted that lower anode potential can also leads to the peak
shifting, which might be resulted from lithium plating. The exact de-
gradation process needs to be confirmed a post-mortem analysis.

To identify LAM on positive electrode, DV curves can be used to
investigate the battery internal changes during their ageing. The DV
curves of cell 1 during charging process after different cycling numbers
are shown in Fig. 3 (d). The valleys D and E in IC curves are corre-
sponding to the peaks P, and Pz on DV curves, respectively. It should be
noted that the areas underneath the peaks in IC curve, marked by
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[baseline = (char.base)] [shape = circle, draw, inner sep = 1.5 pt]
(char) 1; , [baseline=(char.base)] [shape = circle, draw, inner
sep = 1.5 pt] (char) 2; and [baseline = (char.base)] [shape = circle,
draw, inner sep = 1.5 pt] (char) 3; in Fig. 3 (b), can be simply identified
by measuring the width of section Q,, Q, and Q. in DV curves (shown in
Fig. 3 (d)). These peak areas represent the capacity involved in the
related reaction in this region. All the DV curves have a very similar
shape in region Q, and Q, regardless the cell age, an obvious reduction
of Q, can be seen along with battery ageing. Fig. 3 (e) demonstrates the
variation of section Q,, Q, and Q, with cycling number, the values of Q,
and Q, remain almost unchanged while Q. decreases largely during
battery ageing.

Area [baseline=(char.base)] [shape = circle, draw, inner
sep = 1.5 pt] (char) 1; is composed of the areas under peak A and E in
Fig. 3 (b)). The intensities of both peaks remain almost invariant and
therefore the value of region Q, is unchanged during aging. It should be
mentioned the area under peak B is defined as the region between
valley E and valley D. During battery ageing, valley D is shifting to
higher voltage level, which leads to the expanding of bottom width of
peak B (marked by the red arrow in Fig. 3 (b)). The decreased area at
the top of peak B is compensated by the enlarged area at the bottom
part. This explains why the total area [baseline=(char.base)]
[shape = circle, draw, inner sep = 1.5 pt] (char) 2; can stay un-
changed, which is reflected by the unvaried value of Q, on DV curves of
Fig. 3 (d). The reduction of shoulder C's intensity and bottom width
indicate the decline of this peak area, which can also be identified from
the decreased value of Q. on DV curves from Fig. 3 (e). The width of Q,
and Q, stay almost unchanged, indicating no obvious LAM on anode
material during ageing [58]. Whether LAM happens on positive mate-
rial during ageing cannot be identified from the full cell IC analysis. The
decrease of Q. indicates LLI is the main cause for battery capacity loss
[28,55,58]. Nevertheless, post-mortem analysis is required to precisely
detect the degradation mechanism.

5. On-line SoH estimation based on positions of FOIs
5.1. Improved SoH estimation method with decreased testing time

Based on the ageing mechanism analysis on the tested batteries, we
could relate the variation of FOIs to the battery capacity fading process
and therefore identify the battery SoH. Monotonic trends in the posi-
tions of FOIs can be clearly identified on IC curves as battery ages. The
peaks on DV curves stay almost unchanged during the ageing process, it
is therefore difficult to correlate the capacity fade with the location and
intensity of peaks on DV curves and makes them unsuitable for online
SoH identification. Additionally, batteries for on-line application are
charged from different SoC levels, and it leads to large changes of peak
positions on DV curves due to the variation of charging capacity.
Nevertheless, the peak positions on IC curves will not be influenced by
partial charging since the voltage of a battery has a definite position
[57]. Hence, IC curves are more suitable for online SoH estimation than
DV curves.

The charging or discharging at the current rate of I;/25 requires too
much time in real application (approximately 50 h to finish the charge
and discharge steps). In order to find the best and the quickest solution
that has a good compromise between test time and accuracy, different
current rates at charging processes were evaluated. Fig. 4 shows the IC
curves obtained from constant charge steps under different current
rates: 1,/25, I;/3, I,/2 and 11,. The potential shift of the IC peaks with a
different current rate is caused by the polarization effect [24]. When
cells are charged under 1I;, no clear shoulder C and valley D can be
identified from the IC curves, accordingly we chose the IC curves with
I,/2 for further research on battery SoH estimation as it was the largest
current rate that enabled of observing all the four FOIs of IC curves for
this type of cells and the test time can be largely decreased.

Fig. 5 (a) shows the IC curves of cell 1 obtained during charging at
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Fig. 3. (a)An illustration of voltage-capacity curves during charging process with current rate of I;/25 after different cycles, (b) representative charging IC curves at different ageing states,
(c) variation of the height and position of peak A and B on IC curves, (d) representative charging DV curves at different ageing states, (e) evolution of region width on DV curves.

different ageing states with /2. As mentioned in Section 3.2 that the window 30 are used for processing the IC curves. The shapes of all the
smoothing window need to be adjusted based on the applied current IC curves are very similar, this allows to identify the battery SoH by
rate. Herein, a MA smoothing window of 50 with a Gaussian smoothing tracking the location and intensity change of the four FOIs. However,
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the intensity of shoulder C is decreasing as battery ages and it will be
difficult to identify after a certain number of cycles. Hence, we choose
valley D as indicator instead of shoulder C, as D can be easily measured
by identifying the point where the IC curve slope is equal to zero in the
voltage region of 3.8 V-4 V.

The variations of the positions and intensity of peak A, B and valley
D are illustrated in Fig. 5 (b). The intensity of peak A and B are de-
creasing with cycling, but no clear correlation between cycling numbers
with intensity of valley D was identified. Nevertheless, all the positions
of the peaks and valley are shifting towards to higher voltage level, and
the positions of FOIs are thereby selected for further study. Having
detected these characteristics of IC curves, it is promising to estimate
the battery SoH based on the detection and measurement of the location
of the three FOIs.

The battery SoH is plotted versus the location of peak A, B and
valley D, which are illustrated in Fig. 5 (c) and (d). The monotonic
characteristic of position as batteries degrade has been verified through
the IC curve analysis, and a linear regression function between battery

SoH and all three FOIs can be established with Eq. (5).
SoHpor = aror — Pror X Pror

(5)

where Pro; represents the identified positions of FOIs on the IC curve
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Fig. 5. (a) Charge IC curves for cell 1 at BoL under /2 after different cycles (b) variation of positions and intensity of FOIs on IC curves during ageing (c) the battery SoH as function of
the position of peak A, B (d) the battery SoH as function of the position of valley D.
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Table 3
Coefficients for SoH estimation function with different FOIs.

FOIs aror Bror
Peak A 1025 262.2
Peak B 1062 262.2
Valley D 503.1 105.4
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Fig. 6. Illustration of IC curve with OCV curve during charging process at BoL.

with unit V, SoHro; is the estimated SoH with the chosen FOI, azor and
Bro; are the empirical coefficients determined by using the Matlab curve
fitting toolbox. The specific values of aro; and By, for tested cell 1 are
listed in Table 3. As three signatures of the curve located at different
voltage levels (peak A, B and valley D) can well correlate with the
battery capacity, all of them can be therefore used for SoH estimation.
This allows identifying battery SoH with partial charging data and
flexible initial charging SoC levels. It should be noted that these func-
tions are derived from the charging voltage curves with current rate of
I,/2, the coefficient of the functions need to be adjusted if a different
charging current rate is applied. IC analysis is shown to be a useful tool
for battery SoH assessment.

5.2. SoH estimation with partial charging

It is rarely to fully discharge the batteries in real applications and
start charging from 0% SoC, instead, they are normally charged from an
uncertain SoC point. Thus, the developed SoH estimation method
should be able to utilize partial charging curves. Fig. 6 illustrates the IC
curve and the open circuit voltage (OCV) curves of cell 1 during
charging process at BoL, the corresponding SoC regions of IC peaks can
be easily identified from the OCV curves. In order to identify peak A,
the starting charging SoC of battery should be no more than 10%. To
derive peak B, the starting charging SoC should be lower than 30% and
the starting SoC level should be less than 60% in order to get valley D.

Fig. 7 illustrates the correlation between the SoH of the six batteries
with the position of FOIs by fitting the proposed linear equation in Eq.
(5). The V-Q curves during cycling ageing test are used to derive IC
curves. For cell 1 and 2, all three FOIs can be identified as they are
cycled from 0% to 100% SoC. For cell 3 and 4, the starting charging SoC
level of 20% is lower than 30% but higher than 10%, only two FOIs
(peak B and valley D) can be seen. For cell 5 and 6, the starting charging
SoC 40% is lower than 60% but higher than 30%, which only allows for
the identification of one FOI (valley D). As can be seen, the developed
linear equation from cell 1 can also be well fitted for the other cells
which are cycled under the same (cell 2) and different (cell 3, 4, 5 and
6) cycling conditions with less than maximum 2.5% estimation errors.
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The small estimation errors prove the robustness and generality of this
method. This method is applicable for the cells under partial charging
process and therefore the testing time is largely reduced.

With the established linear correlation function between the battery
SoH and the position of FOIs, an on-line SoH monitoring framework can
be established. The proposed multi-stage SoH identification method for
this type of NMC batteries during static charging process is shown in
Fig. 8. The initial charging SoC level for the batteries need to be
identified before SoH estimation to see if it is possible to get FOIs from
the static charging curve. The maximum threshold of SoC for identi-
fying battery SoH is 60%, the battery need to be discharged first if the
initial SoC is higher than this value. If the cell is charged from an initial
SoC level of lower than 10%, all the FOIs can be found on the IC curves,
and the value of position of peak A, B and valley D can be used for
battery SoH estimation by using Eq. (5). If the initial charging SoC level
is in the range of 10%~30%, peak B and valley D can be recognized
from the IC curves, two estimated SoH values will be obtained with the
two FOIs. When the initial charging SoC of the cell is in the range of
30%"~60%, only valley D can be seen on the IC curve and therefore the
estimated SoH value can be calculated based on one FOI. When mul-
tiple FOIs are acquired from IC curve, the average value can be calcu-
lated for indicating the battery SoH. This method also shows its
adaptability in the cases when batteries are not fully charged to 100%
SoC, as the SoH can be estimated as long as one of the three FOIs can be
identified from the IC curves. For instance, if the batteries are charged
from 10% SoC to 30% SoC, Peak A can be observed from the curve even
though peak B and valley D are missing. With the position of Peak A,
the real-time battery SoH can still be estimated.

The whole on-line SoH estimation process can be summarized as the
following steps:

e Obtaining V-Q curve: before starting the SoH estimation step, the
initial battery SoC need to be checked to ensure it is in the range of
0%~60%, then the cells can be charged to the cut-off voltage.

e Deriving IC curve: the charging V-Q curves are used to obtain IC
curve with numerical derivative method and the IC curves are
smoothed with the proposed GS method.

e Estimating SoH: the positions of the FOIs can be measured from
smoothed IC curves and the battery SoH is then estimated by using
the established linear function in Eq. (5).

With this proposed method, the online SoH identification for battery
can be achieved with partial charging data, it can be run on a daily basis
during static charging process.

5.3. Validation

For the validation of the proposed multi-stage SoH estimation
method, partial charging tests with different starting SoC levels (10%,
15%, 20%, 25%, 30%, 50% and 60%) were conducted on the cells at
different SoH. The estimated SoH results were compared with the tested
capacity value obtained from the I;/3 capacity test to calculate the es-
timation error. To assist the comprehension of validation process, the
estimation results from three cells (Cell 1, 3 and 5) aged under different
cycling depth were used as examples to prove the robustness of the
proposed method.

The cells were charged from different starting SoC points with
current rate of /2, the partial charging curves were used to derive IC
curves and the positions of FOIs can be easily identified by following
the testing steps in Fig. 8. With the information of FOIs locations on the
IC curves, the battery SoH can be estimated. The result of locations of
FOlIs, the corresponding estimated SoH and errors are listed in Table 4.
Different initial charging SoC points lead to different amount of iden-
tifiable FOIs on the IC curves. Take cell 3 as an example, the real ca-
pacity was obtained with the capacity test profile and a SoH of 88.9%
was calculated as the real SoH value for reference. When cell 3 was
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Fig. 7. Correlation between battery SoH and the position of (a) peak A (b) peak B and (c) valley D for all tested cells from life cycle ageing test.

charged from 20% SoC with current rate of 1,/2, Peak B and valley D can
be identified from the IC curve, two SoH values of 89.47% and 88.75%
can be calculated based on the positions of the two FOIs, respectively.
By calculating the absolute difference between both the real and esti-
mated SoH values, an error of 0.21% was obtained if the value of peak
B's position was used for SoH estimation and an error of 0.43% by using
the value of valley D's position. For the final indication of battery SoH,
the average SoH value of 89.11% can be used with estimation error of
0.24%. When the initial SoC is 50%, only the position of valley D can be
used for estimating SoH. This derives an estimated SoH of 89.62% with
an absolute estimation error of 0.82%.

The less than 2.5% maximum absolute estimation errors prove the
robustness of this multi-stage SoH estimation method. With the pro-
posed multi-stage SoH estimation method, the battery can be charged
from different SoC levels. The maximum allowable SoC level for
starting charging the battery is 60%, which fits most application cases
of batteries. With the enhanced charging current rate of I,/2 and the
allowable partial charging condition, the testing time for SoH estima-
tion can be reduced to minimum 0.8 h when the cells are charged fully.
The time required for battery SoH estimation with different initial
charging SoC can also be found in Table 4.

To summarize, an on-line SoH monitoring framework is developed
in this work by constructing quantitative correlations between the
battery capacity with the positions of FOIs on IC curves. Gaussian filter
is applied in combination with the moving average method to smooth
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the IC/DV curve. This advanced smoothing method can largely im-
proves the quality of derived IC curves compare with the curves ob-
tained from conventional MA method. The noise on the derived IC
curves can be completely filtered without changing the properties of
FOIs on IC curves and the information related to battery capacity fade
from the FOIs can be therefore accurately extracted. Three FOIs (peak
A, B and valley D) in IC curves were chosen as indicators for battery
SoH estimation based on their positions. Given that all the three FOIs at
different voltage levels are shifting towards to a higher voltage level as
the battery ages, a multi-stage SoH estimation method is proposed. It
utilizes partially charging data with a maximum SoC threshold of 60%,
which can cover most cases for battery charging during real-time op-
erations. Six high energy NMC batteries cycled under different condi-
tions are used to validate the proposed method. The results show that
the linear function developed between FOIs position versus battery SoH
from cell 1 can evaluate the SoH of the other five cells which are cycled
under the same (cell 2) and different (cell 3, 4, 5 and 6) cycling con-
ditions. The less than 2.5% maximum estimation errors prove the ro-
bustness of this method. This proposed IC based SoH monitoring fra-
mework could be used on a daily bases and fully charging/discharging
data is only needed for SoH calibration after a certain period of op-
eration. The proposed on-line SoH estimation method requires a char-
ging current rate (1,/2), it also shows potential for being applied in the
cases with faster charging current rates. When the current rate largely
increases, some of the FOIs will disappear and therefore make it
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Fig. 8. Flowchart of multi-stage SoH identification method.
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impossible to have multi-stage SoH estimation. Nevertheless, the main
peak B can still be detected and it can be used as the indicator for
battery SoH. Which current rate should be applied for on-line SoH es-
timation is depending on the requirements of specific application.

5.4. Future work

The most desirable SoH estimation tool for lithium ion batteries lies
in the simplicity, generality and accuracy for any kind of batteries.
Taking into account that the battery performances are influenced by
many other factors like chemistry, cell design, battery geometry,
working conditions (e.g. temperature and cycling current rate) and
manufacturing process. It is of significance and necessity to carry out
ageing test by considering the aforementioned impact factors in the
future work. At moment, only single cells are being studied for the
ageing mechanism and SoH estimation. In realities, cells are connected
in series and/or parallel to form battery pack. Given the fact that the
inherent variations exist among the cells in a battery pack due to
manufacturing process and in-homogeneous operating conditions and
the cell-to-cell variation will become even larger when the cells age.
These variances result in SoH deviation among individual cells in the
battery pack, therefore, the SoH estimation method for single cell may
not be suitable for the whole battery pack. How to adapt the SoH es-
timation technique based on IC peak tracking from cell level to multi-
cell module level remains an open question, which will be discussed in
the following work.
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6. Conclusion

In this paper, we developed a battery SoH estimation tool with
specific emphasis on utilizing partially charging data for on-line im-
plementation. A new smoothing method based on Gaussian filter is
introduced to derive IC/DV curves and its basic principles are in-
troduced. With the proposed smoothing algorithm, an SoH estimation
framework is developed to provide a quantitative correlation between
positions of FOIs on IC curves with battery capacity fade. The battery
SoH can thereby be estimated from normal charging data with flexible
initial charging SoCs during real-life operation. The obtained results are
accurate and precise with maximum 2.5% estimation error. This tech-
nique shows good characteristics of providing accurate estimation re-
sults and moderate computational effort. It only requires the static
charging voltage-capacity curve and shows good potential for the im-
plementation in a BMS.

The battery degradation mechanism is also shortly discussed in this
paper by analyzing the evolution of the FOIs on IC/DV curves under low
current of I;/25. We could decipher the main contribution to the ca-
pacity fading of this commercial NMC cell, which is caused by LLI. A
small portion of LAM is suspected to happen on positive materials.
Nevertheless, the exact ageing mechanism of the tested batteries need
to be confirmed by post-mortem analysis in the future work. As the
variations of FOIs on IC curves are more related of LLI, further studies
are need to verify the applicability of the developed SoH estimation
methodology to another ageing mechanism.
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Table 4
Battery SoH estimation results from three different cells.
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Cell No. Real SoH (%) FOIs Initial charging SoC (%)
10 15 20 25 30 50 60
1 90.4 Peak A Position(V) 3.56 - - - - - -
Estimated SoH (%) 92.16 - - - - - -
Estimation error (%) 1.95 - - - - - -
Peak B Position(V) 3.708 3.700 3.700 3.709 3.706 - -
Estimated SoH (%) 89.7 91.8 91.8 90.8 90.18 - -
Estimation error (%) 0.74 1.59 1.59 0.47 0.239 - -
Valley D Position (V) 3.915 3.915 3.913 3.908 3.908 3.904 3.899
Estimated SoH (%) 90.49 90.60 90.67 91.22 91.20 91.36 92.05
Estimation error (%) 0.10 0.22 0.29 0.9 0.88 1.07 1.83
Average estimated SoH (%) 90.78 91.2 91.23 91.01 90.69 91.36 92.05
Absolute estimation error (%) 0.42 0.88 0.92 0.67 0.32 1.07 1.83
3 88.9 Peak A Position(V) 3.565 - - - - - -
Estimated SoH (%) 90.2 - - - - - -
Estimation error (%) 1.46 - - - - - -
Peak B Position(V) 3.709 3.708 3.709 3.712 3.715 - -
Estimated SoH (%) 89.4 89.73 89.47 88.71 87.88 - -
Estimation error (%) 0.58 0.93 0.64 0.21 1.14 - -
Valley D Position (V) 3.934 3.932 3.931 3.926 3.926 3.923 3.918
Estimated SoH (%) 88.4 88.6 88.75 89.29 89.63 89.62 90.11
Estimation error (%) 0.52 0.33 0.16 0.43 0.82 0.81 1.37
Average estimated SoH (%) 89.33 89.16 89.11 89.00 88.75 89.62 90.11
Absolute estimation error (%) 0.49 0.30 0.24 0.11 0.16 0.81 1.37
5 87.9 Peak A Position (V) 3.566 - - - - - -
Estimated SoH (%) 89.98 - - - - - -
Estimation error (%) 2.36 - - - - - -
Peak B Position (V) 3.708 3.706 3.707 3.709 3.714 - -
Estimated SoH (%) 89.55 90.1 90.06 89.31 88.29 - -
Estimation error (%) 1.88 2.5 2.45 1.606 0.44 - -
Valley D Position (V) 3.94 3.939 3.935 3.932 3.925 3.928 3.918
Estimated SoH (%) 87.7 87.90 88.33 88.64 89.26 89.10 90.10
Estimation error (%) 0.22 0.01 0.48 0.84 1.54 1.37 2.5
Average Estimated SoH(%) 89.08 89.00 89.20 88.98 88.78 89.62 90.11
Average Estimation Error(%) 1.34 1.26 1.48 1.22 0.99 0.81 1.37
Required Testing Time (h) 1.8 1.7 1.6 1.5 1.4 1 0.8
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